Como ya hemos estado viendo a lo largo de todo el curso, el principal objetivo del Big Data es el análisis y procesamiento de grandes cantidades de datos que no se puede realizar de manera convencional. Por ello, es tan importante que realicemos un estudio extra del ecosistema donde queremos realizar todos estos procesos, moviéndonos de entornos convencionales a entornos específicos para el tratamiento de estos datos.
Durante este Curso en Arquitecturas distribuidas de Big Data seremos capaces de evaluar las diferentes herramientas disponibles para la obtención de los datos y el tratamiento de estos, y las diferentes combinaciones que podemos hacer entre estas herramientas para conseguir un mayor beneficio de nuestros objetivos.
Este curso forma parte del Master en Data Science y Big Data. Si quieres ampliar tu formación, consulta el programa completo.
Como ya hemos estado viendo a lo largo de todo el curso, el principal objetivo del Big Data es el análisis y procesamiento de grandes cantidades de datos que no se puede realizar de manera convencional. Por ello, es tan importante que realicemos un estudio extra del ecosistema donde queremos realizar todos estos procesos, moviéndonos de entornos convencionales a entornos específicos para el tratamiento de estos datos.
Durante este Curso en Arquitecturas distribuidas de Big Data seremos capaces de evaluar las diferentes herramientas disponibles para la obtención de los datos y el tratamiento de estos, y las diferentes combinaciones que podemos hacer entre estas herramientas para conseguir un mayor beneficio de nuestros objetivos.
Este curso forma parte del Master en Data Science y Big Data. Si quieres ampliar tu formación, consulta el programa completo.
Contenidos del curso:
En esta primera clase, nos sumergimos en los fundamentos de las arquitecturas distribuidas, centrándonos en la paralelización y el modelo Map Reduce. Desde los objetivos generales del módulo hasta definiciones clave y tipos de computación, exploramos conceptos cruciales que forman la base del entendimiento de las arquitecturas distribuidas.
La Clase 2 se centra en explorar las arquitecturas Lambda y Kappa, abordando la dicotomía entre procesamiento Batch y Streaming en el contexto del análisis de datos. Además, se examinan las ventajas e inconvenientes de estas arquitecturas, respaldadas por un estudio de caso real en el entorno de Netflix.
Este módulo se centra en el dominio de herramientas fundamentales de la Fundación Apache, con énfasis en HDFS, HIVE, YARN, y ZooKeeper. Cada clase presenta aspectos prácticos y teóricos clave para comprender y aplicar estas herramientas en el contexto del análisis de Big Data. A continuación, se destacan los tres principales objetivos de cada clase.
El 95% de nuestros alumnos está trabajando o emprende cuando finaliza sus estudios
Somos la mayor comunidad de profesionales digitales del mundo
Expertos en formación online: más de 10 años liderando la innovación del elearning
El 95% de nuestros alumnos consiguen mejorar su situación al finalizar sus estudios
Curso en Arquitecturas distribuidas de Big Data
Curso en Arquitecturas distribuidas de Big Data